Irreducibility of multilayer network dynamics: the case of the voter model

نویسندگان

  • Marina Diakonova
  • Vincenzo Nicosia
  • Vito Latora
  • Maxi San Miguel
چکیده

We address the issue of the reducibility of the dynamics on a multilayer network to an equivalent process on an aggregated single-layer network. As a typical example of models for opinion formation in social networks, we implement the voter model on a two-layer multiplex network, and we study its dynamics as a function of two control parameters, namely the fraction of edges simultaneously existing in both layers of the network (edge overlap), and the fraction of nodes participating in both layers (interlayer connectivity or degree of multiplexity). We compute the asymptotic value of the number of active links (interface density) in the thermodynamic limit, and the time to reach an absorbing state for finite systems, and we compare the numerical results with the analytical predictions on equivalent single-layer networks obtained through various possible aggregation procedures. We find a large region of parameters where the interface density of large multiplexes gives systematic deviations from that of the aggregates. We show that neither of the standard aggregation procedures is able to capture the highly nonlinear increase in the lifetime of a finite size multiplex at small interlayer connectivity. These results indicate that multiplexity should be appropriately taken into account when studying voter model dynamics, and that, in general, single-layer approximations might be not accurate enough to properly understand processes occurring on multiplex networks, since they might flatten out relevant dynamical details.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)

Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...

متن کامل

Application of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)

The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...

متن کامل

Simulating and Optimizing the Conjunctive Use of Surface and Groundwater Resources Using the System Dynamics Approach (A Case Study: Dashte-Abbas Irrigation Network)

The construction of irrigation network and the water transfer from Karkheh Dam to Dashte-Abbas, due to neglecting the groundwater resources has increased groundwater level and waterlogging of the agricultural land in the recent years. The aim of this study was, therefore, to optimize the conjunctive use of surface and groundwater resources in Dashte-Abbas to minimize waterlogging problems and a...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

Application of multilayer perceptron neural network and support vector machine for modeling the hydrodynamic behavior of permeable breakwaters with porous core

In this research, the application of multilayer perceptron (MLP) neural networks and support vector machine (SVM) for modeling the hydrodynamic behavior of Permeable Breakwaters with Porous Core has been investigated. For this purpose, experimental data have been used on the physical model to relate the reflection and transition coefficients of incident waves as the output parameters to the wid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1507.08940  شماره 

صفحات  -

تاریخ انتشار 2015